Modified Fincke-Pohst Algorithm for Low-Complexity Iterative Decoding over Multiple Antenna Channels

نویسندگان

  • Haris Vikalo
  • Babak Hassibi
چکیده

In recent years, soft iterative decoding techniques have been shown to greatly improve the bit error rate performance of various communication systems. For multiple antenna systems employing spacetime codes, however, it is not clear what is the best way to obtain the soft-information required of the iterative scheme with low complexity. In this paper, we propose a modification of the Fincke-Pohst (sphere decoding) algorithm [l] to estimate the maximum a posteriori (MAP) probability of the received symbol sequence. The new algorithm (FP-MAP) solves a nonlinear integer least-squares problem and, over a wide range of rates and SNRs, has polynomial-time (often cubic) expected complexity. The FP-MAP algorithm provides soft detection information for the soft channel decoder. The soft decoder’s output is then fed back to the FP-MAP, and iterated on. The performance of the FP-MAP algorithm on a multiple antenna system employing turbo code is demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Search Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes

In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...

متن کامل

Search Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes

In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...

متن کامل

Geometrical Detection Algorithm for MIMO Systems

The channel capacity and error-rate performance of MIMO systems could be improved by increasing the number of transmit antennas and receive antennas and the size of constellation used for modulation (Foschini and Gans, 1998). A main bottleneck that restricts the practical application of MIMO system is the unsatisfactory performance of the decoding algorithms, due to either high computational co...

متن کامل

Maximum-likelihood decoding and integer least-squares: The expected complexity

The problem of finding the least-squares solution to a system of linear equations where the unknown vector is comprised of integers, but the matrix coefficient and given vector are comprised of real numbers, arises in many applications: communications, cryptography, GPS, to name a few. The problem is equivalent to finding the closest lattice point to a given point and is known to be NP-hard. In...

متن کامل

Maximum-Likelihood Sequence Detection of Multiple Antenna Systems over Dispersive Channels via Sphere Decoding

Multiple antenna systems are capable of providing high data rate transmissions over wireless channels. When the channels are dispersive, the signal at each receive antenna is a combination of both the current and past symbols sent from all transmit antennas corrupted by noise. The optimal receiver is a maximum-likelihood sequence detector and is often considered to be practically infeasible due...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004